Origin of Oxygen Reduction Reaction Activity on “Pt3Co” Nanoparticles: Atomically Resolved Chemical Compositions and Structures

نویسندگان

  • Shuo Chen
  • Wenchao Sheng
  • Naoaki Yabuuchi
  • Paulo J. Ferreira
  • Lawrence F. Allard
  • Yang Shao-Horn
چکیده

Rotating disk electrode measurements of acid-treated “Pt3Co” nanoparticles showed specific oxygen reduction reaction (ORR) activity (∼0.7 mA/cmPt at 0.9 V vs RHE in 0.1 M HClO4 at room temperature), twice that of Pt nanoparticles. Upon annealing at 1000 K in vacuum, the ORR activity at 0.9 V was increased to ∼1.4 mA/cmPt (four times that of Pt nanoparticles). High-resolution transmission electron microscopy and aberrationcorrected high-angle annular dark-field in the scanning transmission electron microscope was used to reveal surface atomic structure and chemical composition variations of “Pt3Co” nanoparticles on the atomic scale. Such information was then correlated to averaged Pt-Pt distance obtained from synchrotron X-ray powder diffraction data, surface coverage of oxygenated species from cyclic voltammograms, and synchrotron X-ray absorption spectroscopy. It is proposed that ORR activity enhancement of acid-leached “Pt3Co” relative to Pt nanoparticles is attributed to the formation of a percolated structure with Pt-rich and Pt-poor regions within individual particles, while the increase in the specific ORR activity of annealed “Pt3Co” nanoparticles relative to Pt can be attributed to the presence of surface Pt segregation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced activity for oxygen reduction reaction on "Pt3Co" nanoparticles: direct evidence of percolated and sandwich-segregation structures.

Atomically resolved structures and compositions of Pt alloy nanoparticles were obtained using aberration-corrected high-angle dark field imaging, which was correlated to specific ORR activity based on a Pt surface area. The enhanced specific ORR activity (approximately 2 times relative to Pt) of acid-treated "Pt3Co" nanoparticles can be related to composition variations at the atomic scale and ...

متن کامل

Performance comparison of graphene and graphene oxide-supported palladium nanoparticles as a highly efficient catalyst in oxygen reduction

In this work, the performance of graphene nanosheets (GNs) and graphene oxide (GO) nanosheets, as a support for palladium nanoparticles (PdNPs) toward oxygen reduction reaction (ORR), was studied. The graphene nanosheets were functionalized by a new and simple method. The PdNPs were synthesized on a glassy carbon electrode (GCE) modified with GNs or GO via a potentiostatic method; without using...

متن کامل

Synthesis of Supported Pt Alloy three Dimensional Rhombus Shapes Nanoparticles for Oxygen Reduction Reaction

In this study PtFeCo ternary alloys nanoparticles of three dimentional (3D) rhombus shapes dispersed on graphene nanosheets (PtFeCo/Gr) were successfully prepared and studied as electrocatalysts for oxygen reduction reaction (ORR) in polymer-electrolyte fuel cells. A combination of analytical techniques including powder X-ray diffraction, X-ray photoelectron spectra, inductively coupled plasma-...

متن کامل

Synthesis and characterization of Pt3Co bimetallic nanoparticles supported on MWCNT as an electrocatalyst for methanol oxidation

The impregnation method was used to synthesize Pt and Pt3Co supported on MWCNTs applying NaBH4 as the reducing agent. The structure, morphology, and chemical composition of the electrocatalysts were characterized through SEM, XRD, and EDX. X-ray diffraction showed a good crystallinity of the supported Pt nanoparticles on the composites and showed the formation of Pt3<...

متن کامل

Synthesis and characterization of Pt3Co bimetallic nanoparticles supported on MWCNT as an electrocatalyst for methanol oxidation

The impregnation method was used to synthesize Pt and Pt3Co supported on MWCNTs applying NaBH4 as the reducing agent. The structure, morphology, and chemical composition of the electrocatalysts were characterized through SEM, XRD, and EDX. X-ray diffraction showed a good crystallinity of the supported Pt nanoparticles on the composites and showed the formation of Pt3<...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009